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We provide a straightforward and numerically efficient procedure to perform local-density-approximation
+Hubbard I approximation �LDA+HIA� calculations, including self-consistency over the charge density,
within the full potential linearized augmented plane-wave �FP-LAPW� method. This implementation is all-
electron, includes spin-orbit interaction, and makes no shape approximations for the charge density. The
method is applied to calculate selected heavy actinides in the paramagnetic phase. The electronic structure and
spectral properties of Am and Cm metals obtained are in agreement with previous dynamical mean-field theory
�LDA+DMFT� calculations and with available experimental data. We point out that the charge-density self-
consistent LDA+HIA calculations predict the f charge on Bk to exceed the atomic integer f8 value by 0.22.
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I. INTRODUCTION

It is known that conventional band theory—local-density
approximation �LDA� and its semilocal extension, general-
ized gradient approximation �GGA�—gives poor results for
actinides. Since the LDA/GGA results are qualitatively in-
correct already at the level of ground-state properties such as
the equilibrium volume and magnetization, the electronic
structure theory of actinides requires that electron-electron
correlations are included beyond those given by conventional
LDA/GGA. Lately, several correlated band theory ap-
proaches have been put forward: LDA+Hubbard U �LDA
+U�,1,2 the hybrid functional �HYF� approach,3 or the self-
interaction-corrected local spin density �SIC-LSD�.4 Each of
them achieved an improvement of some particular aspects of
the electronic structure of actinides.

None of these correlated band theories has been capable
to correctly describe spectral properties of actinides. Re-
cently, the excitations in Pu and Am were extensively studied
with the aid of a combination of the LDA and the dynamical
mean-field theory �LDA+DMFT�,5–9 which successfully ex-
plains the experimentally observed multipeak structure in Pu
valence-band photoelectron spectra �PES�. In spite of obvi-
ous progress in the LDA+DMFT theory, it has been mostly
focused on calculations of excitations and implemented on
the basis of a tight-binding Hamiltonian built from the LDA,
without self-consistency over the charge density.

In this paper we present a simple and numerically effi-
cient procedure to combine the LDA+Hubbard I approxima-
tion �HIA�, including self-consistency over the charge den-
sity, with the full potential linearized augmented plane-wave
�FP-LAPW� method.10 The FP-LAPW method makes no
shape approximation for the charge density and is considered
to be state-of-the-art in accuracy. We apply our implementa-
tion to the electronic structure and spectroscopic properties
of heavy actinides: Am, Cm, Bk, and �-Pu.

There is a revival of interest in the electronic and spectro-
scopic properties of heavy actinides.11 Superconducting tem-

perature of Am shows complex and unconventional depen-
dence on lattice structure transformations.12 On the basis of
standard band-structure calculations it was proposed that cu-
rium is one of the few elements that has its lattice structure
stabilized by magnetism.13 The spectroscopic studies14 sug-
gested that 5f states of Cm are shifted toward the LS cou-
pling limit, unlike most actinide elements where the spin-
orbit coupling prevails.

The paper is organized as follows. For the sake of com-
pleteness, in Sec. II we recall the basic equations of the
LDA+DMFT in a formulation of Ref. 15. Then we describe
charge-density self-consistent LDA+HIA approximation
implemented in FP-LAPW method. In Sec. III we present the
results of the charge-density self-consistent LDA+HIA cal-
culations for 5f Am, Cm, and Bk elemental metals in the
paramagnetic state. These results are compared with previous
work and additional features are pointed out.

II. METHODOLOGY

We start with the multiband Hubbard Hamiltonian �Ref.
15� H=H0+Hint, where

H0 = �
i,j

�
�1,�2

Hi�1,j�2

0 ci�1

† cj�2
= �

k
�

�1,�2

H�1,�2

0 �k�c�1

† �k�c�2
�k�

�1�

is the one-particle Hamiltonian found from ab initio elec-
tronic structure calculations of a periodic crystal, including
the spin-orbit coupling �SOC�. The indices i and j label lat-
tice sites, �= �lm�� denote spinorbitals ����, and k is a k
vector from the first Brillouin zone �BZ�. It is assumed that
the electron-electron correlations between s, p, and d elec-
trons are well described within the density-functional theory,
while the correlations between the f electrons have to be
considered separately by introducing the interaction Hamil-
tonian
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Hint =
1

2�
i

�
m1,m2,m3,m4

�,��

�m1,m2�Vi
ee�m3,m4�

� cim1�
† cim2��

† cim4��cim3�. �2�

The operator Vee represents an effective on-site Coulomb
interaction15 expressed in terms of the Slater integrals Fk and
the spherical harmonics �lm�.

In what follows we use a local approximation for the one-
particle self-energy ��k ,z� which contains the electron-
electron correlations, i.e., we assume that the self-energy is
site diagonal and therefore independent of k. The corre-
sponding one-particle Green’s function reads

G�k,z� = 	z + 	 − H0�k� − ��z�
−1, �3�

where z is a �complex� energy measured with respect to the
chemical potential 	. The interaction term, Eq. �2�, acts only
in the subspace of f states. Consequently, the self-energy
��z� is nonzero only in the subspace of the f states.

The self-consistent procedure to solve the periodic lattice
problem in the DMFT approximation is now formulated in
the usual way making use of the “impurity” method of Ref.
15. The DMFT self-consistency condition is achieved by
equating the local Green’s function in a solid to the Green’s
function of a single-impurity Anderson model �SIAM� that
describes an isolated multiorbital impurity surrounded by a
bath of uncorrelated delocalized electrons.

A. Hubbard-I approximation for �(z)

We make use of the multiorbital HIA, which is suitable
for incorporating the multiplet transitions into the electronic
structure, as it is explicitly based on the exact diagonaliza-
tion of an isolated atomiclike shell. Furthermore, we restrict
our formulation to the paramagnetic phase. In HIA, only the
site-diagonal terms from one-particle Hamiltonian �1� are
retained,15 and the on-site atomiclike Hamiltonian including
SOC is constructed, see also Ref. 7,

Hat = �
m1,m2

�,��


�l · s�m1m2

��� cm1�
† cm2�� +

1

2 �
m1. . .m4

�,��

�m1m2�Vee�m3m4�

� cm1�
† cm2��

† cm4��cm3�, �4�

where 
 is the SOC parameter. Note that the crystal-field
terms are not included in Eq. �4�, and will be treated on the
LDA level that is sufficient for our applications. Consecu-
tively, exact diagonalization, Hat���=E����, is performed in
order to obtain all eigenvalues, E�, and eigenvectors, ���,
which are used to calculate the atomic Green’s function

	Gat�z�
�1�2
=

1

Z
�
�,	

�	�c�1
������c�2

† �	�

z + E	 − E� + 	H

�	e−��E�−	HN�� + e−��E	−	HN	�
 . �5�

Here � is the inverse temperature, Z is the partition function,
and N� is the number of particles in the state ���. These N�

are eigenvalues of the particle number operator that com-

mutes with the atomic Hamiltonian �4�. Parameter 	H plays
the role of a HIA chemical potential. Actual choice of 	H
will be discussed later. Finally, the atomic self-energy is
evaluated as

	�H�z�
�1�2
= z��1�2

− �
�l · s� + 	Gat�z�
−1��1�2
. �6�

This �H�z� contains all local spin-orbit and Coulomb corre-
lation effects.

B. Self-consistency over charge-density: Local-density-matrix
approximation

Instead of solving Eq. �3� directly, we look for an approxi-
mate solution including charge-density self-consistency in a
way which is similar to the well-known rotationally invariant
LDA+U method.16

Our self-consistent calculation follows the flowchart
shown in Fig. 1. We start with calculating the HIA ��z�, Eq.
�6�, for given 	H. In our applications, this starting 	H corre-
sponds to the nominal atomic f-shell occupation nf. The ini-
tial solution for lattice electrons is represented by the LDA
Green function matrix in the local basis ����,

	GLDA�z�
�1�2
=

1

VBZ
�

BZ
dk	z + 	 − HLDA�k�
�1�2

−1 . �7�

Note that the SOC is included in the LDA Hamiltonian
HLDA�k�. The local impurity Green’s function is calculated
combining ��z� and GLDA�z�,

	G�z�
�1�2

−1 = 	GLDA�z�
�1�2

−1 − �
���1�2
+ 	�H�z�
�1�2

� , �8�

where 
� is chosen to keep the given number of f electrons
nf, and serves as an analogon of the difference between the
impurity and the lattice chemical potentials.17

With the aid of G�z� from Eq. �8�, the occupation matrix
n�1�2

=−�−1 Im �EFdz	G�z�
�1�2
is evaluated, and used to

construct the effective “LDA+U potential,”18 VU

=��1�2
���1

�VU
�1�2���2

�, where

VU
�1�2 = �

���

���2��Vee��1��� − ��2��Vee����1��n��� − Vdc��1�2
.

�9�

In what follows, we have adopted the fully localized �or
atomiclike� limit �FLL� prescription of Solovyev et al.19 for
the double-counting term Vdc=U�nf −1 /2�−J�nf −1� /2. The
set of Kohn-Sham-type equations is solved self-consistently
over the charge density ��r�

	− �2 + VLDA�r� + VU + 
�l · s�
�i�r� = ei�i�r� ,

��r� = �
i

occ

�i
†�r��i�r� , �10�

where the effective potential is the sum of the standard LDA
potential VLDA�r� and the on-site electron-electron interac-
tion potential VU. Solving Eq. �10� is similar to solving Eq.
�3� in a sense that the self-energy matrix ��z� from Eq. �6� is
substituted by the energy-independent potential matrix de-
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fined in Eq. �9�. After the self-consistency over the charge
density is achieved, the LDA+U Green’s function matrix
GU�z� in the local basis ���� is calculated from Eq. �7�, sub-
stituting HLDA by LDA+U Hamiltonian. Finally, new uncor-
related Green’s function

GLDA�z� = 	GU
−1�z� + VU�z�
−1 �11�

is evaluated. The self-consistency loop is closed by inserting
this new GLDA�z� into the matrix Eq. �8�. In addition, an
updated self-energy ��z� is calculated with the aid of Eqs.
�5� and �6�, where the new value of 	H is set equal to the
double-counting potential Vdc that corresponds to nf which is
obtained from the LDA+U Green’s function.

The condition 	H=Vdc is essential and can be justified as
follows. The double-counting term Vdc accounts approxi-
mately for the electron-electron interaction energy ELDA

ee al-
ready included in the LDA. Namely, Vdc is a derivative of
this mean energy contribution with respect to the f-shell oc-
cupation nf, Vdc=�ELDA

ee /�nf. Indeed, it represents a mean-
field value of the chemical potential 	H that controls the
number of f electrons.

The FLL �Refs. 16 and 19� choice of the double counting
Vdc is not unique and other prescriptions, for instance the
so-called “around-mean-field” �AMF� Vdc,

20,21 can be used.

Up to date, there is no precise solution for the double count-
ing in the conventional LDA/GGA as it does not have a
diagrammatic representation that would provide explicit
identification of the corresponding many-body interaction
terms. Therefore, “physical” arguments prevail in the choice
of Vdc. Since we will be dealing with heavy actinides with
well-localized f manifolds, it is reasonable to use the FLL
double counting that is assumed to perform better for the
case of f occupation close to integer.

We will refer to our procedure as the “local-density-
matrix approximation” �LDMA�, since full convergence for
GLDA, ��r� and 	H is achieved when the local occupation
matrix n�1�2

is converged. We would like to emphasize that
the self-consistency condition of equating the occupation
matrix obtained from the local impurity Green’s function
	Eq. �8�
 to the local occupation matrix in solid 	used in the
LDA+U potential Eq. �10�
 is a subset of general DMFT
condition that the SIAM Green’s function is equal to the
local Green’s function in a solid.22

What makes our approach different from the conventional
LDA+HIA given by Eq. �3� and from similar basis set ex-
tension method of Ref. 23, is that we interchange the “inner”
DMFT self-consistency loop over the bath Green’s function
GLDA, Eq. �11�, and the “outer” self-consistency loop over

FIG. 1. �Color online� The self-consistent procedure for LDMA. Starting with exact diagonalization of the atomiclike Hamiltonian �4� the
local self-energy ��z� 	Eq. �6�
 is evaluated, and the local occupation matrix is obtained with the aid of G�z� from Eq. �8�. Next, the effective
“LDA+U potential” is constructed, the set of Kohn-Sham-type equations 	Eq. �10�
 is solved self-consistently over the charge density, and
the LDA+U Green’s function matrix GU�z� in the local basis is calculated from Eq. �7�. Finally, new uncorrelated Green function 	Eq. �8�

is evaluated. The self-consistency loop is closed by inserting this new GLDA�z� into the matrix 	Eq. �8�
. In addition, an updated self-energy
�H�z� is calculated with the aid of Eqs. �5� and �6�, where the new value of 	H is set equal to the double-counting potential Vdc that
corresponds to nf obtained from the LDA+U Green’s function.
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the charge density ��r�, Eq. �10� �see Fig. 1 for a graphical
insight�.

Up to now, our considerations did not depend on the
choice of the basis set. The method becomes basis depen-
dent, when a projector for the Bloch state �i�r� solution of
Eq. �10� on the local basis ���� is specified. The FP-LAPW
method uses a basis set of plane waves that are matched onto
a linear combination of all radial solutions �and their energy
derivatives� inside a sphere centered on each atom. In this
case, we make use of the projector technique, which is de-
scribed in detail in Ref. 24. It is important to mention that
due to the full potential character care should be taken18 to
exclude the double counting of the f-state nonspherical con-
tributions to the LDA and LDA+U parts of potential in Eq.
�10�. When the muffin-tin matrix elements of Hamiltonian
�10� are calculated, those contributions from the lattice har-
monics K� expansion of the nonspherical part of the LDA
potential VLDA

NSH�r�=��V��r�K��r̂� are removed, which are
proportional to �lm1�K	�lm2� for l=3 orbital quantum number
for f states.

III. RESULTS

As representative systems to illustrate the LDMA numeri-
cal procedure, we select heavy actinides—Am, Cm, and Bk.
For all of them, the HIA is expected to provide a reasonable
approximation for the self-energy. We focus on comparison
between the theory and available experimental results for
valence-band photoelectron spectra as well as x-ray absorp-
tion �XAS� and electron energy-loss spectroscopies �EELS�.
This comparison is often taken as an important criterion of
truthfulness of electronic structure calculations.

Experimental valence-band PES spectra will be compared
with valence spectral densities resulting from the self-
consistent LDMA. For the XAS and EELS experiments, we
will compare the branching ratio B as well as the strength of
the spin-orbit coupling w110 for core-to-valence 4d-5f tran-
sition,

w110 = nf
7/2 −

4

3
nf

5/2,

w110

�14 − nf�
− 
 = −

5

2

B −

3

5
� , �12�

where 
 represents a small correction term.11

The actinides were calculated assuming paramagnetic
state with fcc-crystal structure and the experimental volume
per atom. The parameters of the local Hamiltonian, Eq. �4�,
were chosen as follows: U=F0=4.5 eV, F2, F4, and F6 were
taken from Table III of Ref. 11, and values of the SOC pa-
rameter 
 were extracted from LDA calculations �
Am
=0.35 eV, 
Cm=0.36 eV, and 
Bk=0.42 eV�. The HIA
Green’s function and self-energy, Eqs. �5� and �6�, were cal-
culated along the real axis z=Re z+ i� with �=0.1 eV. In the
process, values 10 eV−1 and 100 eV−1 were used for the
inverse temperature �. For self-consistency, 108 special k
points25 in the irreducible 1/8th part of the BZ were used.
The same sphere radius RMT=3.1 a.u. was used for all ac-

tinides, and RMT�Kmax=10.70 determined the basis set size.
The f-manifold occupation nf is varied in the calculations
until the convergence better than 0.01 for nf and 0.001 for all
components of the on-site occupation matrix n�1�2

is
achieved. The charge density is fully converged to better
than 10−5 e /a.u.3 at each iteration.

We plot in Fig. 2 total and f-projected spectral densities
resulting from self-consistent LDMA calculations 	i.e., from
converged Eq. �8�
. In the case of Am, we obtain very good
agreement with previous LDA+DMFT calculations23,27 as
well as with our own non-self-consistent LDA+HIA
calculations7 for spectral peak positions in occupied and un-
occupied parts of the spectrum �smaller value of
Coulomb-U=4 eV was used in Ref. 7 that explains a slight
upward shift in the calculated PES�. Comparison with the
PES experimental data26,28 is very good.

No PES and BIS measurements exist for Cm and Bk met-
als. The results of the present Cm calculations agree reason-
ably well with the results of recent DMFT study6 supporting
validity of the LDMA. We found practically no changes in
the densities of states when � was increased from 10 eV−1 to
100 eV−1. The results turn out to be almost insensitive to the
choice of �, since it enters explicitly only in Eq. �5� and has
practically no influence on the chemical potential 	H.

For Am and Cm, the self-consistent value of nf is very
close to the atomic integer value �see Table I� in agreement
with LDA+DMFT results.6,23 For Bk, deviation of nf from
the nominal atomic f8 is somewhat bigger �Table I�, suggest-
ing a possibility of mixed-valence character in some of
heavy actinides. In fact, Svane et al.4 have already suggested
mixed-valence states in Am, Cm, and Bk on the basis of
SIC-LSD calculations �see Table I of Ref. 4� that split the f
electrons into localized manifold with fixed valence and an
itinerant part. Present LDMA as well as previous LDA
+DMFT 6,23 calculations show that the tendency to mixed
valence in heavy actinides is substantially overestimated by
the SIC-LSD theory.

Now we turn to comparison with XAS and EELS
experiments.14 In these experiments, the intensities I5/2
�4d5/2→5f5/2,7/2� and I3/2 �4d3/2→5f5/2� of the x-ray absorp-
tion lines are measured and the branching ratio B= I5/2 / �I3/2
+ I5/2� is obtained. Note that B is the only quantity which
directly follows from the experiments. To extract the SOC
strength, w110, the atomic sum rules are used in conjunction
with the atomic calculations.11 In order to compare with the
experiment, we obtain n5/2 and n7/2 from the local occupation
matrix n�1�2

and make use of Eq. �12� to obtain B and w110.
We do not take into account the small correction factor 
.11

The LDMA results for Am are shown in Table I in com-
parison with the experimental data29 and the results of
atomic intermediate-coupling �IC� calculations.30 The
LDMA calculated n5/2, n7/2, branching ratio B, and spin-orbit
coupling strength are close to atomic IC and experimentally
derived values. Once again, present calculations confirm lo-
calized nature of solid-state Am f manifold close to the
atomic f6 configuration.

It is interesting to compare the LDMA with the around-
mean-field LDA+U results for Am.31 The AMF-LDA+U
yields n5/2=5.82 and n7/2=0.12, which are close to the
j j-coupling atomic f6 configuration �n5/2=6, n7/2=0�. The
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branching ratio B=0.98 is rather close to j j-coupling atomic
value of B=1.0. Thus the AMF-LDA+U produced
j j-coupling-like 5f ground state and the LDMA-IC-like
ground state �see Table I� in agreement with the experimental
data.14

The LDMA results for Cm are also shown in Table I
in comparison with the results of DMFT calculations,6

atomic IC calculations,30 as well as with experimental data.14

There is a very good agreement for n5/2, n7/2, B, and
w110 / �14−nf� between LDMA and atomic IC calculations.
Also, the calculated branching ratio agrees with B=0.75 ob-
tained from DMFT calculations.6 Note that LDMA, DMFT,
and IC results agree with each other, and all slightly differ
from experimentally observed B of 0.794.14 Gaining inspira-
tion from EELS, spin-orbit analysis through atomic calcula-
tions, and LDA/GGA, Moore et al.14 suggested that Cm 5f
states are shifted toward the LS coupling limit due to en-
hancement of the exchange interaction over the spin-orbit
coupling. Shim et al.32 noticed very recently that agreement
between the theory and experiment for B improves substan-
tially when the Slater integrals11 are slightly reduced to ac-
count for the solid-state screening.

To date, no XAS or EELS experimental data exist for Bk
metal. The calculated n5/2, n7/2, branching ratio B, and spin-
orbit coupling strength are listed in Table I together with the
atomic IC f8 calculations. The main difference between the
solid-state and the atomic f manifolds is due to an increase in
occupation of n7/2 states. Nevertheless, the values of B and
w110 per hole are practically the same. The measurements of
the branching ratio are often used to obtain the experimental
value of nf. Our results illustrate that the knowledge of the B
ratio alone is not sufficient for precise determination of the
f-manifold occupation.

Now we turn to an estimate of the effective local mag-
netic moment 	ef f in the paramagnetic phase. Importance of
magnetism in Cm metal was emphasized recently in the con-
text of its phase stability.13 The temperature-independent
magnetic susceptibility is found for Am �Ref. 33� that is
consistent with zero 	ef f. The magnetic-susceptibility mea-
surements in the paramagnetic phase yield effective mag-
netic moment of �8 	B for Cm and �9.8 	B for Bk.33

We can estimate semiquantitatively the effective local
moment making use of the atomic Hamiltonian, Eq. �4�, and
the chemical potential 	H=Vdc that is self-consistently deter-
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FIG. 2. �Color online� Total DOS and f DOS for fcc-Am, fcc-Cm, and fcc-Bk for �=100 eV−1. The experimental PES �Ref. 26� for Am
is also shown.
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mined in the LDMA calculations. The expectation values of
total, spin and orbital moment operators, J, S, and L, are
calculated as grand canonical averages,

�X2� =
1

Z
Tr�X2 exp	− ��Hat − 	HN̂�
� ,

X = J,S,L . �13�

Furthermore, spin S, orbital L, and total J moment “quantum
numbers” are found using �X2�=X�X+1� for X=S ,L ,J. Sub-
sequently, the effective magnetic moment 	ef f =gJ

�J�J+1� is
evaluated, where the g factor gJ= �2S+L� /J is used.

For Am, we obtain S=−L=2.33 and J=0 for �
=100 eV−1 in Eq. �13�. Decreasing the value of � to
10 eV−1 yields a small difference in S and L values, and
gives a nonzero value of J=0.099. It means that the thermal
population of the multiplets excited over the nonmagnetic f6

ground state starts to produce non-negligible contribution in
Eq. �13�.

For Cm, S=3.30, L=0.40, and J=3.50 are calculated from
Eq. �13� for �=100 eV−1. Decrease in � to 10 eV−1 pro-
duces practically no difference in S, L, and J values. The
corresponding local magnetic moment 	ef f =7.94 	B agrees
well with atomic IC value and experimental data33 �see Table
II�.

For Bk, Eq. �13� yields S=2.71, L=0.40, and J=6.00 for
�=100 eV−1, as well as for �=10 eV−1. The effective mag-
netic moment 	ef f =9.8 	B agrees well with the atomic f8 IC
value and experimental data33 shown in Table II.

Our calculations, which are not bound by any particular
atomic coupling scheme, illustrate once again that IC scheme
is suitable for heavy actinides. Also, a good agreement of
estimated 	ef f with experimental data is somewhat surpris-
ing.

Finally, we discuss the LDMA results for �-Pu. As we
already mentioned, �-Pu was studied extensively by various
LDA+DMFT calculations.5–9 The paramagnetic state with
fcc-crystal structure for the experimental volume per atom
was assumed in the present LDMA calculations.

The Coulomb-U was chosen, U=F0=4.5 eV, and values
of Slater integrals F2, F4, and F6 were taken from Table III.
of Ref. 11, i.e., they are the same as in Ref. 6. The SOC
parameter 
Pu=0.30 eV was extracted from LDA calcula-
tions and the inverse temperature �=10 eV−1 was used.
Other parameters of the calculation were identical to those
used in the case of Am, Cm, and Bk. The FLL prescription19

is employed for the double-counting term Vdc.
We plot in Fig. 3 total and f-projected spectral densities

resulting from self-consistent LDMA calculations 	i.e., from
converged Eq. �8�
. We obtain good agreement with previous
LDA+DMFT calculations6 as well as with our own non-self-
consistent LDA+HIA calculations7 for spectral peak posi-
tions in occupied and unoccupied parts of the spectrum
�smaller value of Coulomb-U=4 eV was used in Ref. 7 that
explains a slight shift in the calculated PES�. It is seen that
LDMA reproduces well experimentally observed three nar-
row PES features within 1 eV below EF �the most distinct
one very close to EF being accompanied by a weaker feature
at 0.5 eV and another one at 0.8–0.9 eV�.34

TABLE I. Branching ratio B and SOC strength per hole w110 /nh, where nh= �14−nf�, for Am, Cm, and
Bk. Note that “experimental” values of nf

5/2 and nf
7/2 are not measured, but derived from sum rule 	Eq. �12�


assuming integer atomic occupation nf.

Am nf nf
5/2 nf

7/2 B w110 /nh

LDMA ��=10 eV−1� 5.95 5.11 0.83 0.897 −0.743

LDMA ��=100 eV−1� 5.95 5.16 0.79 0.902 −0.756

Atomic IC �Ref. 11� 6 5.28 0.72 0.916 −0.79

Expt.�Ref. 14� 6 5.38 0.62 0.930 −0.825

Cm nf nf
5/2 nf

7/2 B w110 /nh

LDMA ��=10 eV−1� 7.07 4.04 3.03 0.736 −0.340

LDMA ��=100 eV−1� 7.07 4.04 3.03 0.737 −0.341

DMFT �Ref. 6� 7.0 N/A N/A 0.75 N/A

Atomic IC �Ref. 11� 7 4.10 2.90 0.75 −0.37

Expt. �Ref. 14� 7 4.41 2.59 0.794 −0.485

Bk nf nf
5/2 nf

7/2 B w110 /nh

LDMA ��=10 eV−1� 8.22 5.01 3.21 0.840 −0.591

LDMA ��=100 eV−1� 8.22 5.01 3.21 0.840 −0.601

Atomic IC �Ref. 11� 8 5.00 3.00 0.84 −0.61

TABLE II. Effective local magnetic moment 	ef f for Am, Cm,
and Bk. The atomic IC vales of 	ef f and experimental data �Ref. 33�
are shown.

	ef f�	B� Am Cm Bk

LDMA 0 7.94 9.54

IC �Ref. 33� 0 7.6 9.3

Exp. �Ref. 33� 0 �8 �9.8
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The self-consistent LDMA values of nf, n5/2, n7/2, and
branching ratio B are shown in Table III in comparison with
LDA+DMFT,6 AMF-LDA+U,2 atomic IC and j j couplings
for f5 and f6 configurations, and experimental data.11 Note
that LDMA, LDA+DMFT, and f5-IC results for branching
ratio B agree well with each other, and with experimentally
observed B of 0.826.11 The self-consistent value of nf =5.25
is very close to LDA+DMFT result nf �5.2 �Ref. 6� and
somewhat smaller than AMF-LDA+U nf =5.44 value. The
LDMA results for n5/2 and n7/2 are close to IC values for f5,
and AMF-LDA+U values are closer to f5 j j-coupling con-
figuration. As in the Am case, the AMF-LDA+U yields
j j-coupling-like 5f ground state, while the LDMA produces
IC-like ground state in agreement with the experimental
data.11

As above, we make a semiquantitative estimate for the
�-Pu effective local moment in paramagnetic phase using Eq.
�13�. For �=10 eV−1, we obtain S=2.39, L=−3.13, and J
=1.15. It corresponds to 	ef f =2.26 	B. In Eq. �13�, the tem-
perature �−1 plays a role of an effective hybridization. In-
creasing the value of � to 100 eV−1 �i.e., switching off the

effective hybridization� and keeping the local chemical po-
tential 	H unchanged in Eq. �13�, we obtain S=−L=2.42 and
J=0, so that 	ef f =0. To complete the proof of nonmagnetic
character for �-Pu, following Ref. 6, one needs to allow ini-
tial spin polarization and to examine the convergence to non-
magnetic ground state. The practical implementation of the
spin polarization in the LDMA is an ongoing work that will
be discussed in the future.

It is also to mention that we have tested the LDMA pro-
cedure also for selected elemental rare-earth metals �Pr, Nd,
and Gd� and found quite reasonable agreement with experi-
mental spectroscopic data35 as well as the results of non-self-
consistent LDA+HIA calculations.36 The applications of
LDMA to the rare-earth-based materials will be discussed in
detail elsewhere.

IV. DISCUSSION AND CONCLUSIONS

For a better insight, it is useful to point out that in the
current implementation, which is based on a single-site ap-
proximation, Eq. �8�, to the solution of Eq. �3�, the LDMA
can be regarded as an extension of the LDA+U. Importantly,
the on-site occupation matrix n�1�2

is now evaluated in a
many-body Hilbert space rather than in a single-particle Hil-
bert space as in the conventional LDA+U.16 Current imple-
mentation can be further extended toward a fully self-
consistent DMFT making use of Wannier-type basis set
together with more sophisticated approximation for the quan-
tum impurity solver along the lines proposed in Ref. 37.

Our approach to the charge-density self-consistency is es-
sentially different from the one proposed by Lechermann et
al.38 The on-site occupation matrix, instead of the full charge
density, is obtained from the local Green’s function. The cor-
responding orbital-dependent effective potential is used in
Eq. �10� to calculate a new bath Green’s function GLDA, Eq.
�11�, instead of orbital-independent Kohn-Sham �LDA/
GGA� potential.

In this paper, we do not address the very important issues
of the total-energy calculation and determination of the equi-
librium lattice properties. The practical implementation of
accurate total-energy calculations is an ongoing work that
will be discussed in detail in the future.

To summarize, we have presented a straightforward and
numerically efficient local-density-matrix approximation
�LDMA� to perform the LDA+HIA calculations in the FP-
LAPW basis, including self-consistency over the charge den-
sity. This implementation is all-electron, incorporates spin-
orbit interaction, and includes no shape approximations for
the charge density. The method works well for the electronic
spectrum of representative actinide Am, Cm, and Bk metals.
Importantly, the method allows fully self-consistent calcula-
tions for the paramagnetic phase of the local-moment sys-
tems with strong Coulomb correlations. It can be extended to
incorporate the total energy and to treat the magnetically
ordered phases.

TABLE III. 5f-states occupation nf, nf
5/2, and nf

7/2, and branch-
ing ratio B for �-Pu. Note that “experimental” values of nf

5/2 and
nf

7/2 are not measured, but derived from sum rule 	Eq. �12�
 assum-
ing integer atomic occupation nf =5.

�-Pu nf nf
5/2 nf

7/2 B

LDMA 5.25 4.25 1.00 0.813

LDA+DMFT 5.2 N/A N/A 0.83

AMF-LDA+U 5.44 5.33 0.11 0.927

Atomic IC �Ref. 11� 5 4.23 0.77 0.816

Atomic IC �Ref. 11� 6 5.28 0.72 0.980

Atomic j j �Ref. 11� 5 5.0 0.0 0.896

Atomic j j �Ref. 11� 6 6.0 0.0 1.0

Expt. �Ref. 11� 5 4.32 0.68 0.826
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FIG. 3. �Color online� Total DOS and f DOS for �-Pu for �
=10 eV−1. The experimental PES �Ref. 34� for �-Pu is also shown.

ELECTRONIC STRUCTURE AND SPECTRAL PROPERTIES… PHYSICAL REVIEW B 80, 085106 �2009�

085106-7



ACKNOWLEDGMENTS

We are grateful to K. T. Moore, V. Drchal, and V. Janiš for
helpful comments and discussion. This work was supported

by the Grant Agency of Czech Republic �Project No. 202/07/
0644� and German-Czech Collaboration Program �Grants
No. 436TSE113/53/0-1 and No. GACR 202/07/J047�.

1 S. Y. Savrasov and G. Kotliar, Phys. Rev. Lett. 84, 3670 �2000�.
2 A. B. Shick, V. Drchal, and L. Havela, Europhys. Lett. 69, 588

�2005�.
3 D. Torumba, P. Novak, and S. Cottenier, Phys. Rev. B 77,

155101 �2008�.
4 A. Svane, L. Petit, Z. Szotek, and W. M. Temmerman, Phys. Rev.

B 76, 115116 �2007�.
5 S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature �London�

410, 793 �2001�.
6 J. H. Shim, K. Haule, and G. Kotliar, Nature �London� 446, 513

�2007�.
7 A. Shick, J. Kolorenč, L. Havela, V. Drchal, and T. Gouder, EPL

77, 17003 �2007�.
8 J.-X. Zhu, A. K. McMahan, M. D. Jones, T. Durakiewicz, J. J.

Joyce, J. M. Wills, and R. C. Albers, Phys. Rev. B 76, 245118
�2007�.

9 C. A. Marianetti, K. Haule, G. Kotliar, and M. J. Fluss, Phys.
Rev. Lett. 101, 056403 �2008�.

10 E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys.
Rev. B 24, 864 �1981�.

11 K. T. Moore and G. van der Laan, Rev. Mod. Phys. 81, 235
�2009�.

12 J.-C. Griveau, J. Rebizant, G. H. Lander, and G. Kotliar, Phys.
Rev. Lett. 94, 097002 �2005�.

13 S. Heathman, R. G. Haire, T. Le Bihan, A. Lindbaum, M. Idiri, P.
Normile, S. Li, R. Ahuja, B. Johansson, and G. H. Lander, Sci-
ence 309, 110 �2005�.

14 K. T. Moore, G. van der Laan, R. G. Haire, M. A. Wall, A. J.
Schwartz, and P. Söderlind, Phys. Rev. Lett. 98, 236402 �2007�.

15 A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884
�1998�.

16 A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B
52, R5467 �1995�.

17 H. Kajueter and G. Kotliar, Phys. Rev. Lett. 77, 131 �1996�.
18 A. B. Shick, V. Janiš, V. Drchal, and W. E. Pickett, Phys. Rev. B

70, 134506 �2004�.
19 I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, Phys. Rev. B

50, 16861 �1994�.
20 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44,

943 �1991�.
21 J. Kuneš, V. I. Anisimov, A. V. Lukoyanov, and D. Vollhardt,

Phys. Rev. B 75, 165115 �2007�.
22 A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev.

Mod. Phys. 68, 13 �1996�.
23 S. Y. Savrasov, K. Haule, and G. Kotliar, Phys. Rev. Lett. 96,

036404 �2006�.
24 A. B. Shick, A. I. Liechtenstein, and W. E. Pickett, Phys. Rev. B

60, 10763 �1999�.
25 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 �1976�.
26 T. Gouder, P. M. Oppeneer, F. Huber, F. Wastin, and J. Rebizant,

Phys. Rev. B 72, 115122 �2005�.
27 A. Svane, Solid State Commun. 140, 364 �2006�.
28 J. R. Naegele, L. Manes, J. C. Spirlet, and W. Müller, Phys. Rev.

Lett. 52, 1834 �1984�.
29 K. T. Moore, G. van der Laan, M. A. Wall, A. J. Schwartz, and

R. G. Haire, Phys. Rev. B 76, 073105 �2007�.
30 Here we took the IC n5/2, n7/2 values given in Table IV of Ref. 11

and used Eq. �12� to calculate w110 and B.
31 A. Shick, L. Havela, J. Kolorenč, V. Drchal, T. Gouder, and P.

M. Oppeneer, Phys. Rev. B 73, 104415 �2006�.
32 J. H. Shim, K. Haule, and G. Kotliar, Europhys. Lett. 85, 17007

�2009�.
33 P. G. Huray and S. E. Nave, in Handbook on the Physics and

Chemistry of the Actindes, edited by A. J. Freeman and G. H.
Lander �Elsevier, Amsterdam, 1987�, Vol. 5, p. 311.

34 L. Havela, T. Gouder, F. Wastin, and J. Rebizant, Phys. Rev. B
65, 235118 �2002�; L. Havela, F. Wastin, J. Rebizant, and T.
Gouder, ibid. 68, 085101 �2003�.

35 J. K. Lang, Y. Baer, and P. A. Cox, J. Phys. F: Met. Phys. 11,
121 �1981�.

36 S. Lebegue, A. Svane, M. I. Katsnelson, A. I. Lichtenstein, and
O. Eriksson, Phys. Rev. B 74, 045114 �2006�.

37 B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. O. Wehling,
and A. I. Lichtenstein, Phys. Rev. B 77, 205112 �2008�.

38 F. Lechermann, A. Georges, A. Poteryaev, S. Biermann, M.
Posternak, A. Yamasaki, and O. K. Andersen, Phys. Rev. B 74,
125120 �2006�.

SHICK et al. PHYSICAL REVIEW B 80, 085106 �2009�

085106-8


